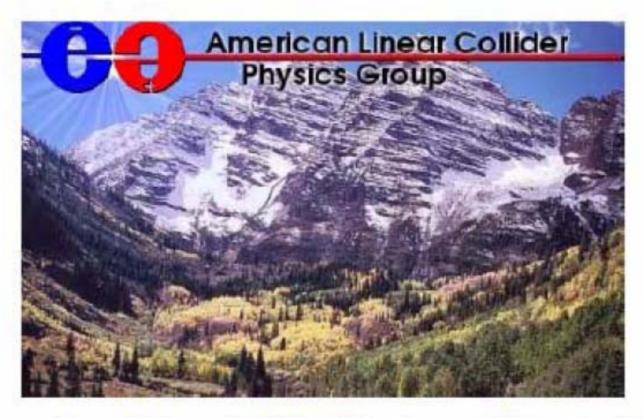



# **GDE Status**



#### **Barry Barish**

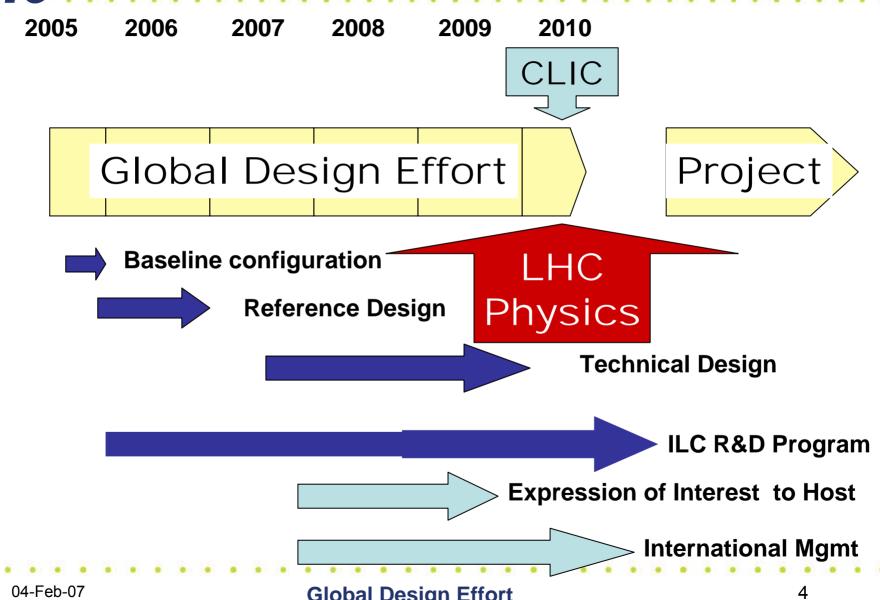
4-Feb-07




## **Confidentiality Issue**

- No restrictions in the presentations at ACFA / GDE Beijing, but .....
- RDR and Costing will not be officially released to public until presented to ICFA/ILCSC - Thursday
  - Joint meeting of ICFA/ILCSC followed by press release and press conference
  - Therefore, presentations at ACFA/ILCSC will be posted on Indico site, but only available by password until Thursday.
  - Password = dontaskmax
- Please defer communications outside and to the press until Thursday.

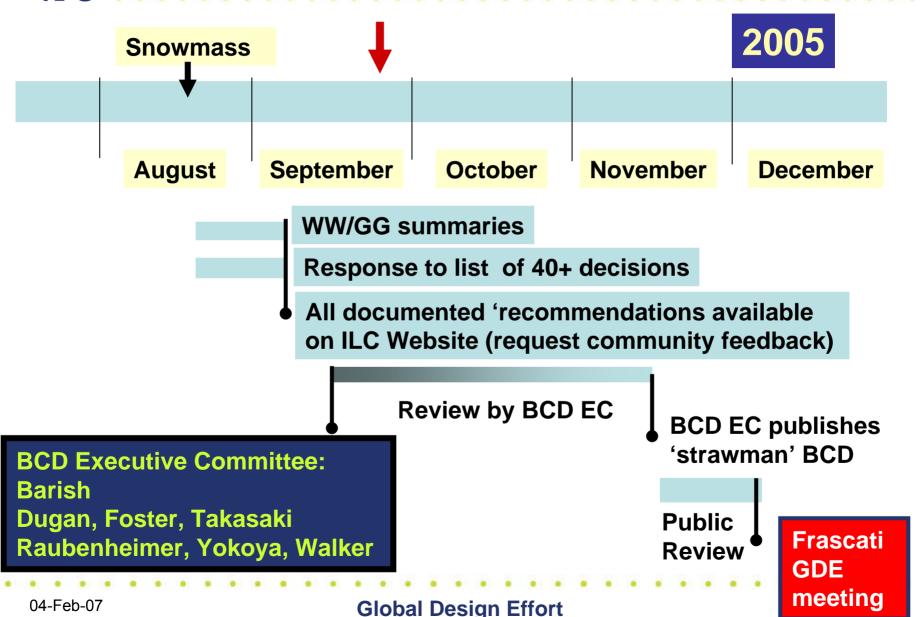



## GDE Began at Snowmass Aug 05



2005 International Linear Collider Physics and Detector Workshop and Second ILC Accelerator Workshop Snownass, Colorado, August 14-27, 2005

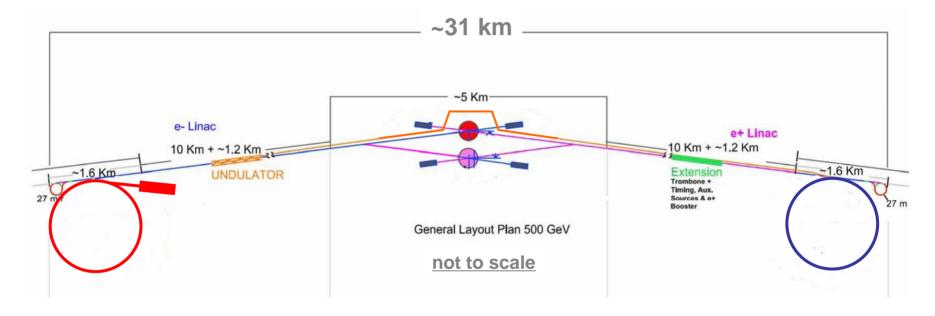



#### The GDE Plan and Schedule





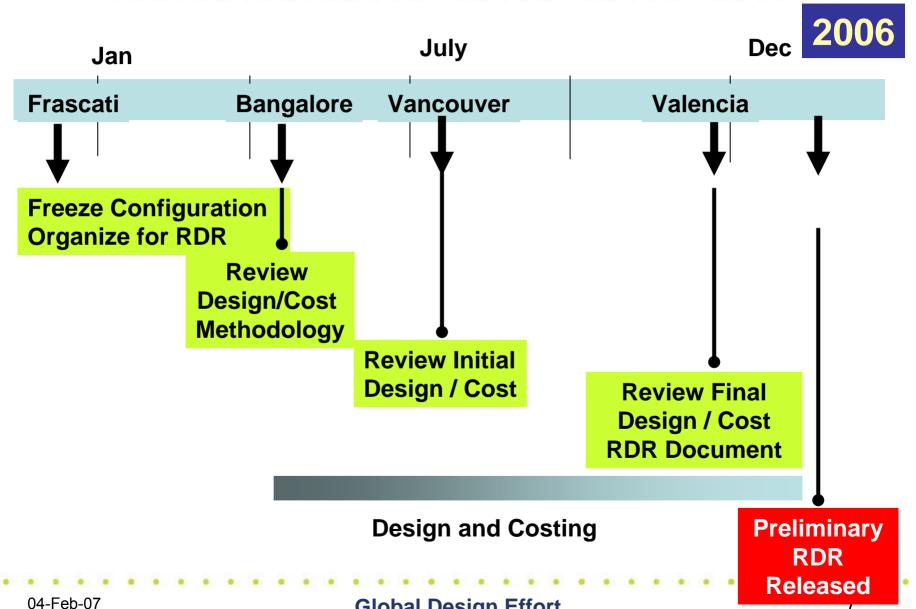
GDE/ACFA Intro Beijing


#### **Snowmass to a Baseline**





#### 1<sup>st</sup> Milestone - ILC Baseline

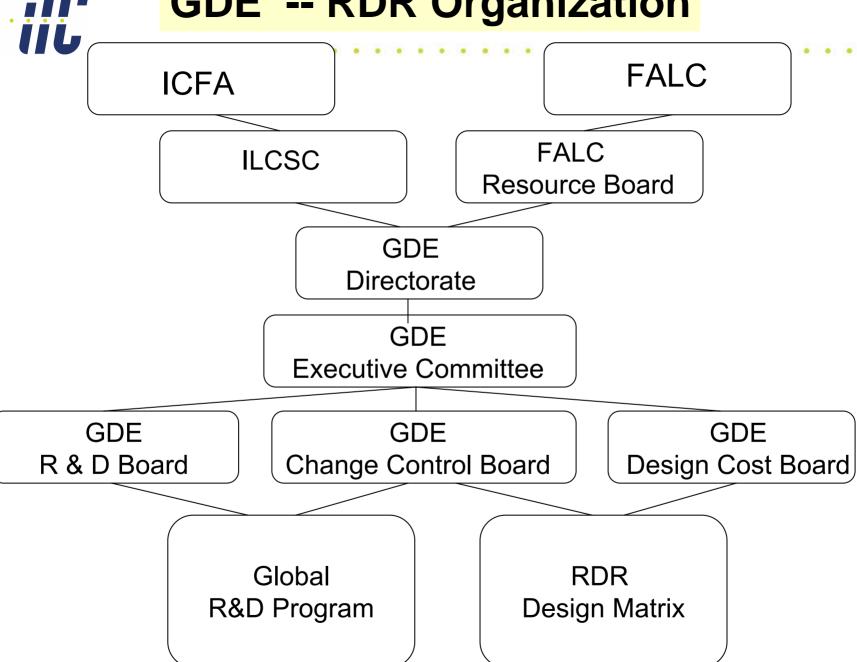

#### Baseline Configuration -- Dec 2006



#### **Documented in Baseline Configuration Document**



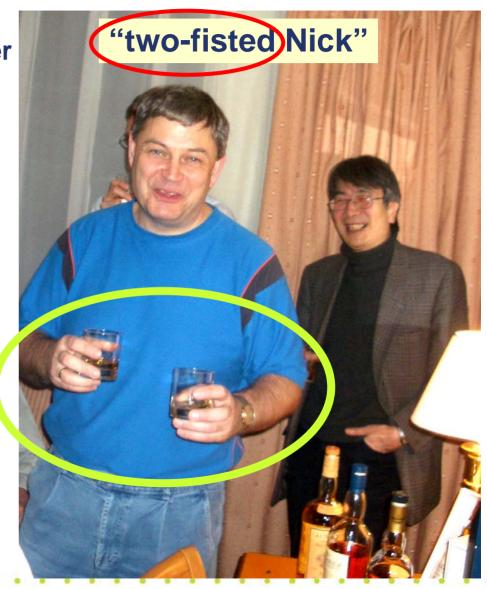
#### Baseline to a RDR




GDE/ACFA Intro Beijing

**Global Design Effort** 




## **GDE -- RDR Organization**





## **RDR Management Board**

- To carry out the RDR, we found we needed a stronger direct management.
- We created the RDR Management Group
  - Director
  - Executive Committee
  - Cost Engineers
  - Integration Scientist
- Met weekly to coordinate, review and guide the process and direct the writing the RDR (with RDR editors)
- Chair: Nick Walker





## **ILCSC Parameters Report**

- E<sub>cm</sub> adjustable from 200 500 GeV
- Luminosity  $\rightarrow \int Ldt = 500 \text{ fb}^{-1} \text{ in 4 years}$
- Ability to scan between 200 and 500 GeV
- Energy stability and precision below 0.1%
- Electron polarization of at least 80%

- The machine must be upgradeable to 1 TeV
- This report has served as our "requirements" document
- This group was reconvened to update and clarify
- Reconvened in Sept 06 and reported in Valencia Nov 06



## **Parameters Report Revisited**

- The ILCSC Parameters Group has given updated selected clarification on accelerator requirements, based on achieving ILC science goals:
  - Removing safety margins in the energy reach is acceptable but should be recoverable without extra construction. The max luminosity is not needed at the top energy (500 GeV), however .....
  - The interaction region (IR) should allow for two experiments ..... the two experiments could share a common IR, provided that the detector changeover can be accomplished in approximately 1 week.



## **RDR Cost Estimating**

- "Value" Costing System: International costing for International Project
  - Provides basic agreed to "value" costs
  - Provides estimate of "explicit" labor (man-hr)]
- Based on a call for world-wide tender: lowest reasonable price for required quality
- Classes of items in cost estimate:
  - Site-Specific: separate estimate for each sample site
  - Conventional: global capability (single world est.)
  - High Tech: cavities, cryomodules (regional estimates)



#### **Vancouver Cost Data**

| System              | July 18, 2006 - Cost Estimates received for |           |           |     |           |           | Regional     |           |           |           |     |
|---------------------|---------------------------------------------|-----------|-----------|-----|-----------|-----------|--------------|-----------|-----------|-----------|-----|
| description         | common                                      | e-        | e+        | DR  | RTML      | ML        | BDS          | Exp       | Am        | Asia      | Eur |
| e- Source           |                                             | $\sqrt{}$ |           |     |           |           |              |           |           |           |     |
| e+ Source           |                                             |           | $\sqrt{}$ |     |           |           |              |           |           |           |     |
| DR                  |                                             |           |           | 1   |           |           |              |           |           |           |     |
| RTML                |                                             |           |           |     | $\sqrt{}$ |           |              |           |           |           |     |
| Main Linac          |                                             |           |           |     |           |           |              |           |           |           |     |
| BDS                 |                                             |           |           |     |           |           | $\sqrt{}$    |           |           |           |     |
| Com, Op, Reliab     |                                             |           |           |     |           |           |              |           |           |           |     |
| Control System      | $\sqrt{}$                                   | $\sqrt{}$ | $\sqrt{}$ |     |           | $\sqrt{}$ | $\checkmark$ |           |           |           |     |
| Cryogenics          |                                             | $\sqrt{}$ | $\sqrt{}$ | √ * |           | $\sqrt{}$ | √ *          |           |           |           |     |
| Convent. Facilities | $\sqrt{}$                                   | $\sqrt{}$ | $\sqrt{}$ |     |           |           | √ *          | $\sqrt{}$ | $\sqrt{}$ | $\sqrt{}$ | V   |
| Installation        | $\sqrt{}$                                   | $\sqrt{}$ | $\sqrt{}$ |     |           | $\sqrt{}$ | $\sqrt{}$    |           |           |           |     |
| Instrumentation     | $\sqrt{}$                                   | $\sqrt{}$ | $\sqrt{}$ |     |           | $\sqrt{}$ | $\checkmark$ |           |           |           |     |
| Cavities            |                                             |           |           |     |           |           |              |           | $\sqrt{}$ |           | V   |
| Cryomodules         |                                             | $\sqrt{}$ | $\sqrt{}$ |     | $$        | $\sqrt{}$ |              |           | $\sqrt{}$ | $\sqrt{}$ | V   |
| RF                  | $\sqrt{}$                                   | $\sqrt{}$ | $\sqrt{}$ |     |           | $\sqrt{}$ |              |           |           | $\sqrt{}$ | V   |
| Magnets & PS        |                                             |           |           | √ * |           |           | √ *          |           |           |           |     |
| Dumps & Collim      |                                             | V         | $\sqrt{}$ | V   |           |           | 1            |           |           |           |     |
| Vacuum              |                                             | $\sqrt{}$ | V         | V   | $\sqrt{}$ | $\sqrt{}$ |              |           |           |           |     |
| Accel Phys          |                                             |           |           |     |           |           |              |           |           |           |     |

 $\sqrt{\ }$  = complete,  $\sqrt{\ }$  \* = almost complete, missing something minor



## **Cost Roll-ups**

## Area Systems

### Technical Systems

Vacuum systems

Magnet systems

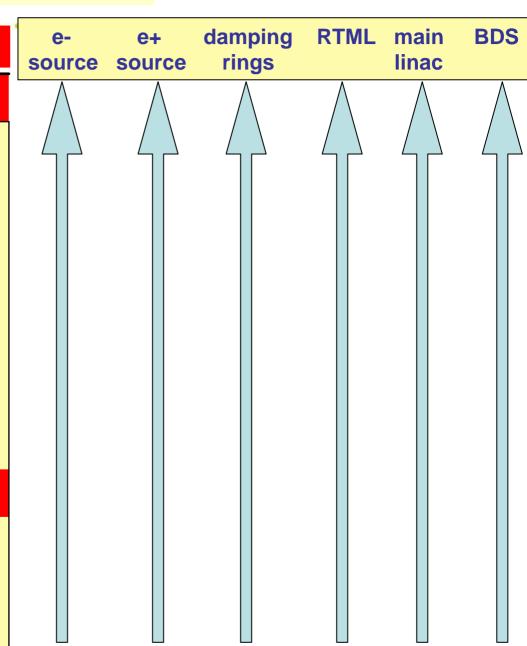
Cryomodule

Cavity Package

RF Power

Instrumentation

Dumps and Collimators


**Accelerator Physics** 

#### Global Systems

Commissioning, Operations & Reliability

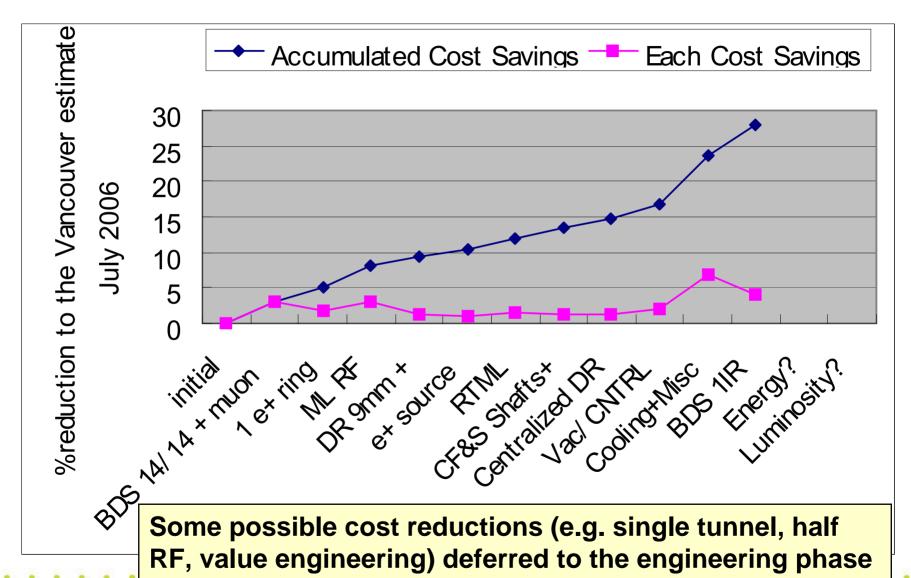
Control System

Cryogenics





## **Cost-Driven Design Changes**


| Area                           |                                                | RDR MB      | CCR         | CCB | approx. ∆\$ |
|--------------------------------|------------------------------------------------|-------------|-------------|-----|-------------|
| BDS                            | 2´14mr IRs                                     | supported   | 14          | YES | ~170 M\$    |
|                                | Single IR with push-pull detector              | supported   | 23          | YES | ~200 M\$    |
|                                | Removal of 2nd muon wall                       | supported   | 16          | YES | ~40 M\$     |
| ML                             | Removal of service tunnel                      | rejected    |             |     | ~150 M\$    |
|                                | RF unit modifications (24 ® 26 cav/klys)       | supported   |             |     | ~50 M\$     |
|                                | Reduced static cryo overhead                   | supported   | <b>≥</b> 20 | YES | ~150 M\$    |
|                                | Removal linac RF overhead                      | supported J |             |     | ~20 M\$     |
|                                | Adoption of Marx modulator (alternate)         | rejected    |             |     | ~180 M\$    |
| RTML                           | Single-stage bunch compressor                  | rejected    |             |     | ~80 M\$     |
|                                | Miscellaneous cost reduction modifications     | supported   | 19          | YES | ~150 M\$    |
| Sources                        | Conventional e+ source                         | rejected    |             |     | <100M\$     |
|                                | Single e+ target                               | supported   | in prep     |     | ~30 M\$     |
|                                | e- source common pre-accelerator               | supported   | 22          | YES | ~50 M\$     |
| DR                             | Single e+ ring                                 | supported   | 15          | YES | ~160 M\$    |
|                                | Reduced RF in DR (6 $\otimes$ 9mm $\sigma_z$ ) | supported   | in prep     |     | ~40 M\$     |
|                                | DR consolidated lattice (CFS)                  | supported   | in prep     |     | ~50 M\$     |
| General                        | Central injector complex                       | supported   | 18(19)      | YES | ~180 M\$    |
| 04-Feb-07 Global Design Effort |                                                |             |             |     | 15          |

GDE/ACFA Intro Beijing

Global Design Effort



## **Evolving Design** → Cost Reductions





## RDR Design & "Value" Costs

The reference design was "frozen" as of 1-Dec-06 for the purpose of producing the RDR, including costs.

It is important to recognize this is a snapshot and the design will continue to evolve, due to results of the R&D, accelerator studies and value engineering

The value costs have already been reviewed twice

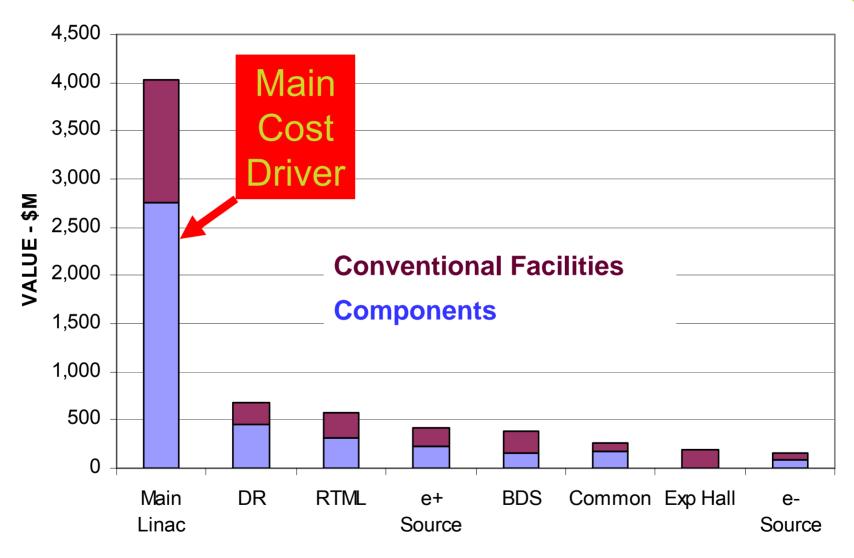
- 3 day "internal review" in Dec
- ILCSC MAC review in Jan

Summary RDR "Value" Costs

Total Value Cost (FY07) \$4.87B Shared

+

\$1.78B Site Specific

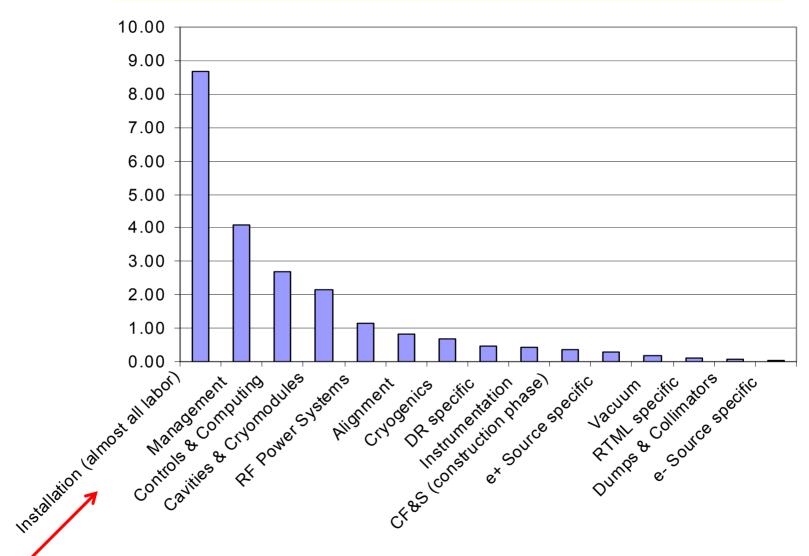

+

13.0K person-years

("explicit" labor = 22.2 M personhrs @ 1,700 hrs/yr)



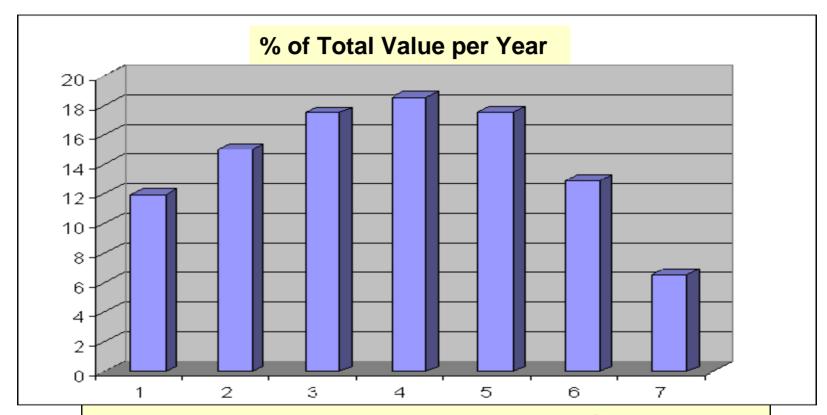
## ILC Value – by Area Systems






## **Explicit Manpower**

13 K person-yrs = 22 M person-hrs






"management" includes overhead



## Value Funding Profile



We are not using integrated cost/schedule tools yet; but it appears feasible to develop a realistic funding profile



#### **How Good is our Cost Estimate?**

- Methodology (value costing) is a practical way of developing agreed to "international" costing.
  - Strength: Good scheme for evaluating value of work packages to divide the project internationally
  - Weakness: Difficult to sort out real regional difference from differences due to different specifications, etc
- We have spent ½ year, developing methodology, good WBS dictionary, technical requirements and costing data requested. We spent another ½ year doing cost vetting and cost / performance optimization. VERY COMPLETE COST ANALYSIS FOR THIS STAGE IN THE DESIGN

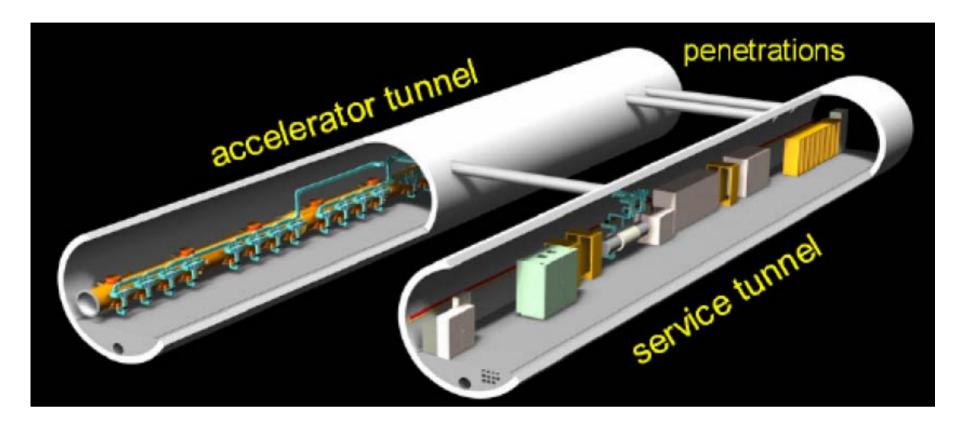


## **Sanity Checks**

#### Comparison with TESLA costs

|                           | TESLA TDR / M€ | Scaled TESLA TDR / M\$ | ILC RDR / M\$ | Difference / M\$ |
|---------------------------|----------------|------------------------|---------------|------------------|
| Total Cost                | 3136           | 5018                   | ~6500         | -1500            |
| Civil Facilities          | 676            | 1082                   | 2437          | 1355             |
| Underground<br>Buildings  | 383            | 613                    | 1070          | 457              |
| Surface Buildings         | 44             | 70                     | 168           | 98               |
| Consultant<br>Engineering | 10             | 16                     | 160           | 144              |
| Power Distribution        | 34             | 54                     | 275           | 221              |
| Water Cooling             | 70             | 112                    | 374           | 262              |
| Cryogenic System          | 162            | 260                    | 567           | 307              |
| Cryo Plant*               | 12 x 11        | 12 x 17                | 10 x 34.3     | 139              |

\*TESLA: 6 x 4.3 kW @ 2 K


ILC: 10 x 3.5 kW @ 2 K

XFEL: 2.45 kW @ 2 K; 34.35 M€ for Oryogenic System

The difference is primarily in conventional facilities



#### **Main Linac Double Tunnel**



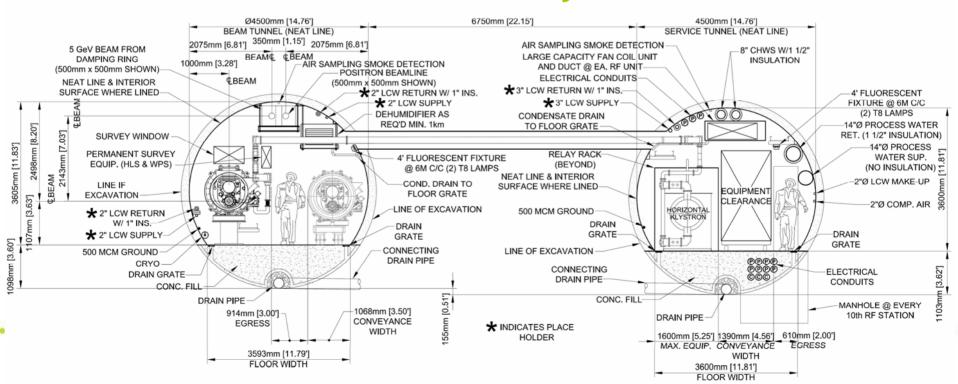
- Three RF/cable penetrations every rf unit
- Safety crossovers every 500 m
- 34 kV power distribution



## Cost Driver – Conventional Facilities

72.5 km tunnels ~ 100-150 meters underground

13 major shafts ≥ 9 meter diameter


443 K cu. m. underground excavation: caverns, alcoves, halls

92 surface "buildings", 52.7 K sq. meters = 567 K sq-ft total



#### **Main Linac Tunnels**

- Design based on two 4.5m tunnels
  - Active components in service tunnel for access
  - Includes return lines for BC and sources
  - Sized to allow for passage during installation
  - Personnel cross-over every 500 meters





#### **Conventional Facilities**

#### **Regional Comparisons:**

Quote 2007\$ - Escalate 2006\$ by 10.6% U.S (Turner); 2-3 % other regions

| ASIA    | TOTAL COST= | \$2,247,562 | CIVIL ONLY= | \$1,377,765 |
|---------|-------------|-------------|-------------|-------------|
| AMERICA | TOTAL COST= | \$2,540,439 | CIVIL ONLY= | \$1,648,052 |
| EUROPE  | TOTAL COST= | \$2,493,066 | CIVIL ONLY= | \$1,608,407 |

| Yen to US \$ | 0.0085714 |
|--------------|-----------|
| Euro to US\$ | 1.2       |
| Euro to Yen  | 140       |
| US to Yen    | 116.7     |



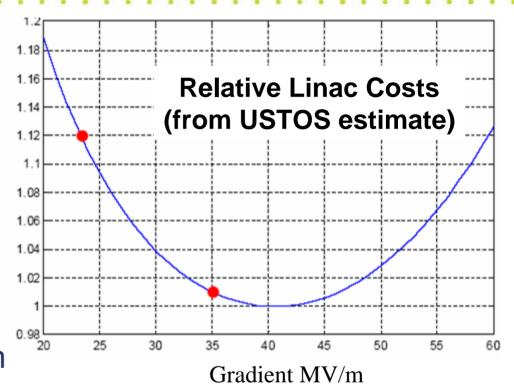


#### **How Good is our Cost Estimate?**

- Cost Estimate is ~ 30% level over the RDR concept.
   However, there are some important limitations:
  - The estimate is for a concept or reference design, not an engineering design.
  - The design will evolve, giving concerns of future cost growth. We believe this can be compensated for by deferred potential gains from value engineering
  - Major Cost Drivers: Conventional facilities need actual site(s) for better estimates (e.g. safety, one tunnel, shallow sites, etc)
  - Major Cost Drivers: Main Linac limited because of proprietary information, regional differences, gradient, uncertainties regarding quantity discounts, etc
- Risk analysis will be undertaken following this meeting



#### **Cost Driver - The Main Linac**


| Subdivision                                  | Length (m)      | Number |
|----------------------------------------------|-----------------|--------|
| Cavities (9 cells + ends)                    | 1.326           | 14,560 |
| Cryomodule (9 cavities or 8 cavities + quad) | 12.652          | 1,680  |
| RF unit (3 cryomodules)                      | 37.956          | 560    |
| Cryo-string of 4 RF units (3 RF units)       | 154.3 (116.4)   | 71 (6) |
| Cryogenic unit with 10 to 16 strings         | 1,546 to 2,472  | 10     |
| Electron (positron) linac                    | 10,917 (10,770) | 1 (1)  |

- Costs have been estimated regionally and can be compared.
  - Understanding differences require detail comparisons industrial experience, differences in design or technical specifications, labor rates, assumptions regarding quantity discounts, etc.



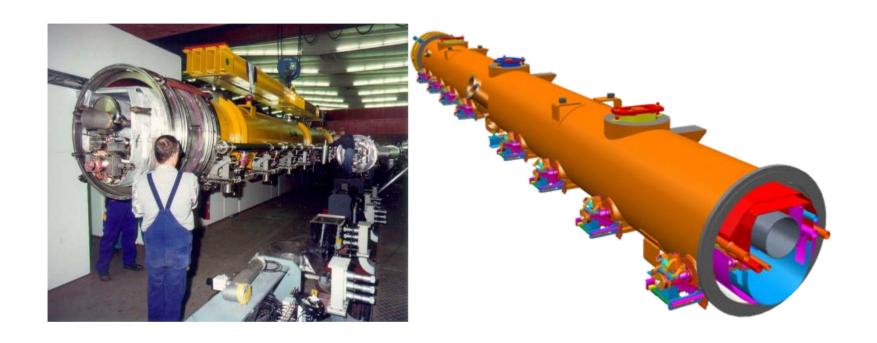
#### **Main Linac Gradient Choice**

- Balance between cost per unit length of linac, the available technology, and the cryogenic costs
- Optimum is fairly flat and depends on details of technology
- Current cavities have optimum around 25 MV/m



|         | Cavity<br>type | Qualified gradient MV/m | Operational gradient MV/m | Length<br>Km | Energy<br>GeV |
|---------|----------------|-------------------------|---------------------------|--------------|---------------|
| initial | TESLA          | 35                      | 31.5                      | 10.6         | 250           |
| upgrade | LL             | 40                      | 36.0                      | +9.3         | 500           |



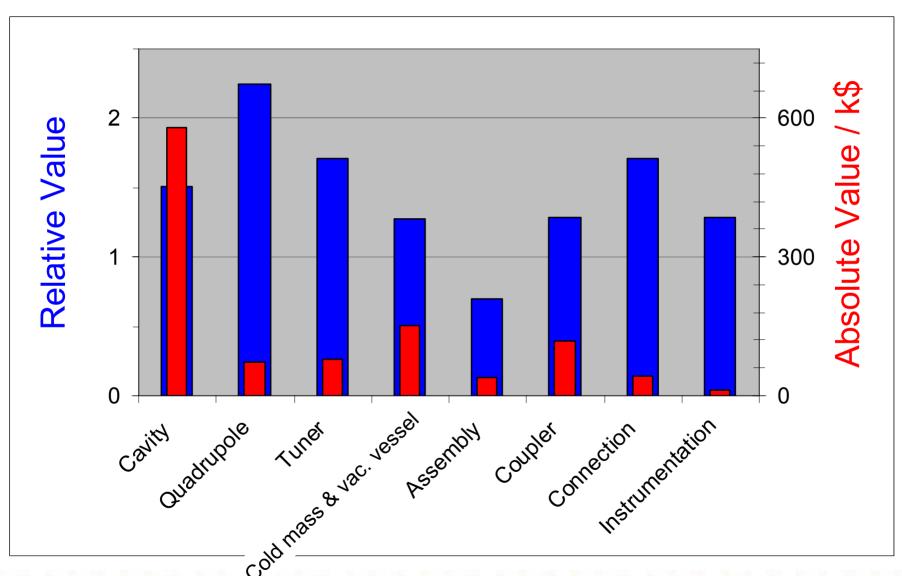

## **Cost Impact of Lower Gradient**

- We have given high priority to S0 Cavity R&D program to demonstrate baseline 31.5 MV/m
- Cost impact of running the ILC linacs with a range of gradients (22-34 MV/m with an average of 28 MV/m)
  - assumes the power to the cavities is adjustable (one time only)
- The Main Linac cost increases by 11.1% and the ILC cost increases by 6.7% assuming Main Linacs are 60% of the ILC cost.

From Chris Adolphsen

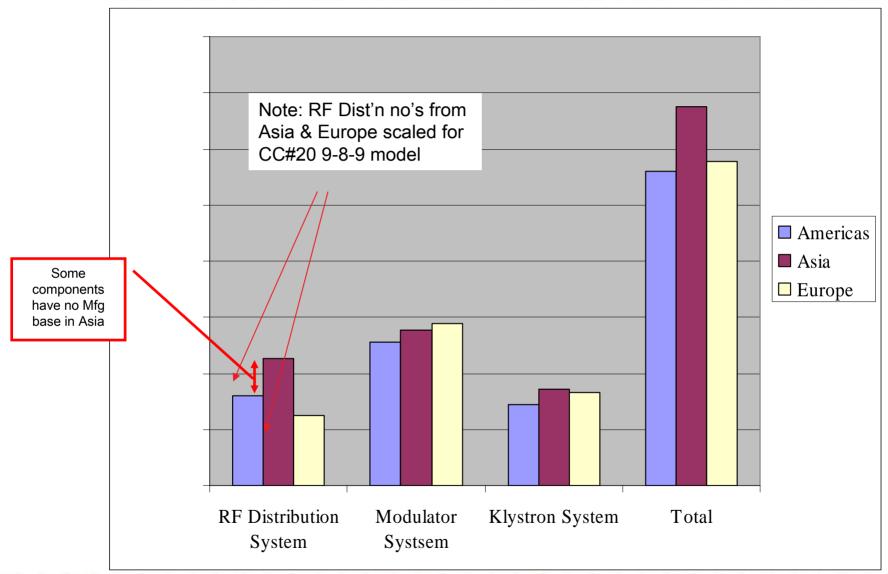


## **Cryomodule Value Estimates**




**TESLA** cryomodule

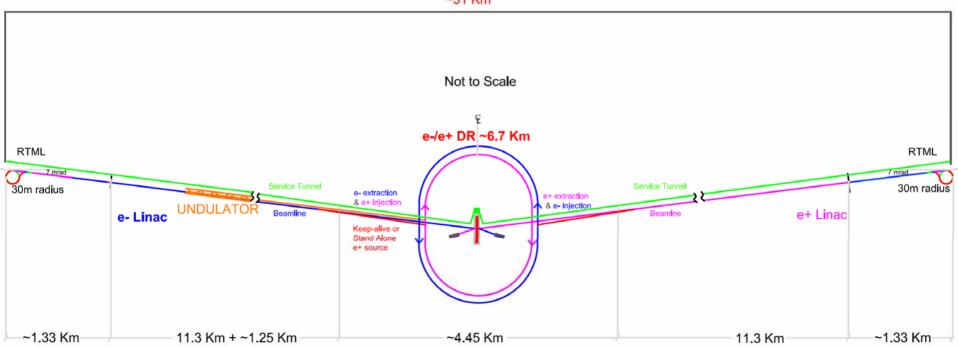
4<sup>th</sup> generation prototype ILC cryomodule




## **American vs European Estimate**






## Cost of High Level RF by Region





## 2<sup>nd</sup> Milestone – ILC Reference Design

- 11km SC linacs operating at 31.5 MV/m for 500 GeV
- Centralized injector
  - Circular damping rings for electrons and positrons
  - Undulator-based positron source
- Single IR with 14 mrad crossing angle
- Dual tunnel configuration for safety and availability





## **How Good is the RDR Concept?**

- The design has been carried out by Area Systems that have been built up into an overall design.
  - We have advanced in integrating that design and even in being able to evaluate proposed changes that cross several area systems (e.g. central injector – E Paterson)
  - A more integrated design approach is envisioned for the engineering design stage.
- Technical system designs still immature, resulting in lack of detailed specifications, requirements and value engineering has been deferred

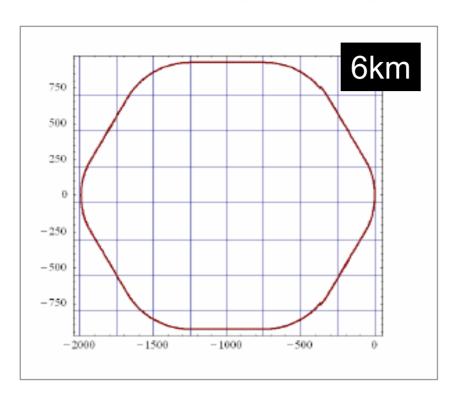


## **Design Parameters**

| Center-of-mass energy                     | $500  \mathrm{GeV}$                                   |  |  |
|-------------------------------------------|-------------------------------------------------------|--|--|
| Peak luminosity                           | $2 \times 10^{34} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}$ |  |  |
| Availability                              | 75%                                                   |  |  |
| Repetition rate                           | $5~\mathrm{Hz}$                                       |  |  |
| Duty cycle                                | 0.005%                                                |  |  |
| Main linacs                               |                                                       |  |  |
| Average accelerating gradient in cavities | $31.5~\mathrm{MV/m}$                                  |  |  |
| Length of each main linac                 | $11~\mathrm{km}$                                      |  |  |
| Beam pulse length                         | $1 \mathrm{\ ms}$                                     |  |  |
| Average beam current in pulse             | 9.0 mA                                                |  |  |
| Damping rings                             |                                                       |  |  |
| Beam energy                               | $5~{ m GeV}$                                          |  |  |
| Circumference                             | $6.7~\mathrm{km}$                                     |  |  |
| Length of beam delivery section (2 beams) | $4.5~\mathrm{km}$                                     |  |  |
| Total site length                         | $31~\mathrm{km}$                                      |  |  |
| Total site power consumption              | $230~\mathrm{MW}$                                     |  |  |
| Total installed power                     | $\sim 300~\mathrm{MW}$                                |  |  |

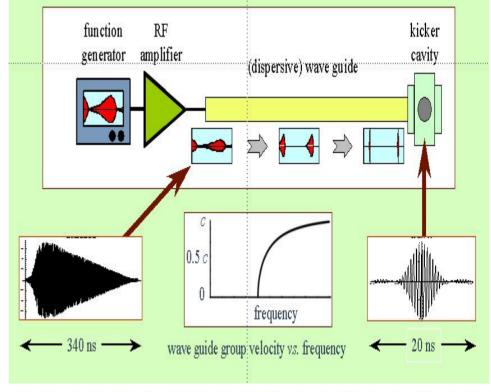






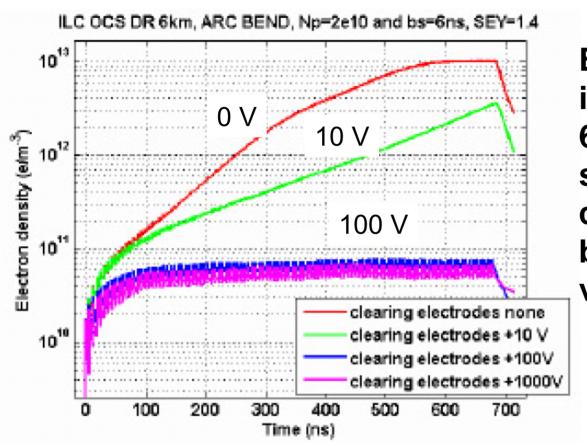

## Design Challenges - Availability

- ILC is has about 10x the number of operating units compared to previous accelerators with similar availability goal (~ 85%)
- This will require significant improvements in:
  - Failure rates on component and sub-systems magnets,
     PS, kickers, etc
  - Redundancy power, particle sources, etc
  - Access for maintenance and servicing double tunnel concept
- The availability issue will need much attention during engineering design phase.




## Design Challenges - Damping Rings




The damping rings have more accelerator physics than the rest of the collider

# Requires Fast Kicker 5 nsec rise and 30 nsec fall time





## **Electron Cloud in Damping Rings**



Electron cloud buildup in an arc bend of the 6.7 km ring and suppression effect of clearing electrodes biased at the indicated voltages.

Simulations show ~ 100 V is sufficient to suppress the average (and central) cloud density by two orders of magnitude. NEEDS EXPERIMENTAL DEMONSTRATION



## **Summary & Final Remarks**

- We are releasing a "draft" Reference Design Report to ICFA/ILCSC on Thursday
  - The reference design presents a complete (but not engineered design) that can achieve the physics design parameters with acceptable risk.
  - Vetted and cost / performance optimized "value costing" has been obtained yielding the scope of the project, identified areas needing R&D, industrial study and value engineering.
- The Reference Design will provide an excellent basis and guidance for the undertaking an Engineering Design to bring us to construction readiness
- In Beijing, we will thoroughly expose the Reference Design, emphasize the R&D program, discuss plans for carrying out the Engineering Design to get to readiness for construction